

In Situ Measurement of Density and Strength/Stiffness of HMA Mixtures

Zhong Wu Louisiana Transportation Research Center

Louisiana Asphalt Technology Conference February 23-24, 2005 Shreveport, LA

| | | || Outline

- Objectives
- Scope
- Field Testing
- Laboratory Testing
- Discussion of Results
- Conclusions

I III Objectives

Evaluate the variability of Air Voids of Plant Produced Mixtures

- Compare different methods of air void measurements
- Characterize SGC samples and field cores
- Assess the in-situ test measurements

Scope

Four rehabilitation Projects

- I-10 Egan
 - » 25.0 mm Superpave Binder Course
 - » 12.5 mm Superpave Wearing Course
- I-10 Vinton
 - » SMA mixture
- US190
 - » 25.0 mm Superpave Base Course
 - » 25.0 mm Superpave Binder Course
- LA964
 - » 19 mm Type 8 Wearing Course

Experimental Design

Field Evaluation

- In-situ Density
 - » PQI Model 301
- FWD
- LFWD
- PSPA

Laboratory Evaluation

- Density
 - » Conventional, Vacuum Sealing
- Mechanistic Properties
 - » Indirect tensile strength
 - » Indirect tensile resilient modulus
 - » Frequency sweep at constant height

Mobile Laboratory

Test section

- Collect sufficient loose mixtures from the paver
- Mixture composition analysis
- Compacted Samples
 - » Air voids
 - » Mechanistic tests

Laboratory Density Measurement
Cores and SGC samples
Conventional (Saturated Surface Dry) Method - AASHTO T166

Vacuum Sealing Method

- CoreLok
- ASTM D 6752

Laboratory Mechanistic Tests

Indirect Tensile Strength Test

- 25°C
- Each test section:
 - » One Core and SGC sample
- Analysis: ITS

Indirect Tensile Resilient Modulus Test

- 5 °C, 25°C, and 40°C
- Each test section:
 - » One Core and SGC sample
- Analysis: ITMr

• FSCH

- AASHTO TP 7
- $48^{\circ}C$ and $60^{\circ}C$
- Each test section:
 - » One Core and SGC sample
- Analysis: G* and δ

Field Test Section Layout

LWP

RWP

Density - 5 tests per point - 15 point - 75 test results **PQI Measurement** •

PQI model 301 TransTech System, Inc.

Field Test Section Layout (contd..)

FWD & LFWD

- 15 points

LFWD – PRIMA 100 model Carl Bro Company, Denmark

Field Test Section Layout (contd..)

Portable Seismic Pavement Analyzer (PSPA)

- PSPA
 - 15 points

PSPA-D Geomedia Research & Development Inc.

Field Test Section Layout (contd..)

Cores

- 3: 6" diameter
- 2: 4" diameter

Results of Methods of Air Voids Measurements

Typical Variation of Air Voids Measurement

I. Conventional Method (AASHTO T-166)

6.4

0.8

Avg

6.2

S6

Typical Variation of Air Voids Measurement (Contd..)

II. Vacuum Sealing Method (CoreLok)

Typical Variation of Air Voids Measurement (Contd..)

III. Pavement Quality Indicator (PQI)

Egan BC-25 mm Superpave

Egan WC - 12.5 mm Superpave

Comparison of Average Air Voids

Mix Type

Relationship of Air Voids Test Methods (Conventional vs CoreLok)

Relationship of Air Voids Test Methods (PQI vs. Conventional / CoreLok)

Variation of ITS, ITMr, and G*

Typical Variation of ITS

I 10 Egan Binder Course (25 mm Superpave)

Typical Variation of ITS (Contd..)

I 10 Egan Wearing Course (12.5mm Superpave)

250 200 150 100 50 WC-S1 WC-S2 WC-S3 WC-S4 WC-S5 WC-S6 Avg

- SGC
 - Mean = 188psi
 - STD = 18psi

$$-\mathrm{CV}=9\%$$

- Core
 - Mean = 157psi
 - STD = 17psi
 - $-\mathbf{CV}=\overline{\mathbf{11}^{0/0}}$

Average ITS Results (25 °C)

ITS(SGC) vs ITS (Core)

ITS vs Air Voids

Variation of ITMr – I 10 Egan 12.5 mm Mixture – 5°C

• SGC

- Mean = 713ksi
- STD = 72ksi
- CV = 10%

- Core
 - Mean = 754ksi
 - STD = 63ksi

$$-\mathbf{CV} = 8\%$$

Variation of ITMr – I 10 Egan 12.5 mm Mixture – 25°C

• SGC

- Mean = 411ksi
- STD = 41ksi
- CV = 10%

- Core
 - Mean = 428ksi
 - STD = 32ksi

$$-\mathbf{CV}=8\%$$

Variation of ITMr – I 10 Egan 12.5 mm Mixture – 40°C

• SGC

- Mean = 208ksi
- STD = 27ksi
- CV = 13%

- Core
 - Mean = 202ksi
 - STD = 16ksi

$$-\mathbf{CV} = 8\%$$

Average IT Mr Results (5 °C)

Average IT Mr Results (25 °C)

Average IT Mr Results (40 °C)

ITMr of All Mixtures (5°C, 25°C,and 40°C) (SGC vs. Core)

ITMr of All Mixtures (5°C) (SGC vs. Core)

ITMr of All Mixtures (25°C) (SGC vs. Core)

ITMr of All Mixtures (40°C) (SGC vs. Core)

Typical Variation of G* I 10 Egan 12.5 mm Mixture – 48 C

- SGC
 - Mean = 25992 psi
 - SD = 3604 psi
 - CV = 14 %

Core

- Mean = 14758 psi
- SD = 1310 psi
- CV = 9 %

Typical Variation of G* I 10 Egan 12.5 mm Mixture – 60 C

Average FSCH Test Results at 48 °C

Average FSCH Test Results at 60 °C

Complex Shear Modulus (G*_{10Hz}) (SGC vs. Core)

Variation of Field Measurements

Light Falling Weight Deflectometer (LFWD)
10-kg drop weight onto loading plate
The center deflection (*δ_c*)

$$E_{LFWD} = \frac{K_{c}(1 - v^{2}).P.r}{\delta_{c}}$$

Where: K = 2 for flexible plate and or $K = \pi/2$ for rigid. P is the applied load, r is the plate radius.

- Dynatest Model 800
- 7 Sensors
- Three indicators
 - d1
 - d1-d6
 - d7

Portable Seismic Pavement Analyzer (PSPA)

 Ultrasonic Surface Wave method to determine the surface layer modulus

- One source producing surface wave
- Two sensors measuring wave propagation time/velocity

Typical Variation of FWD Results I 10 Egan 25 mm Binder Course

Variation of LFWD Results – I 10 Egan 25 mm Mixture

Variation of PSPA Modulus

Relationship Between FWD and LFWD – d1 (200 mm loading plate)

[_____ Relationship Between FWD and LFWD – d7 (200 mm loading plate)

[_____ Relationship Between FWD and LFWD – d1-d6 (200 mm loading plate)

Variation of E_(LFWD) with PQI Air voids

PSPA Modulus vs PQI Air Voids

Conclusions Air Voids

 Binder course mixtures had the highest air voids variation as measured by all three methods, followed by the wearing course and SMA mixtures

- CoreLok air voids variation were slightly higher than the conventional methods
- Strong correlation between air voids measured using Conventional and CoreLok methods
- Correlations between PQI measured air voids and other two methods (CoreLok and AASHTO T-166) are fair

Conclusions Mechanistic Tests

- Binder course mixtures had the highest ITS & G* variations followed by the wearing course and SMA mixtures
- Cores showed better correlations to air voids than SGC samples
- Cores and SGC samples showed Similar variations
 ITS, G*
- The ITS and G* of SGC samples were higher than cores
- Good correlation was observed between the G* of the cores and SGC samples

Conclusions Mechanistic Tests

 Good correlations were observed between E_{LFWD} and FWD deflections d1 and d1-d6

 LFWD test may be used as an alternative to FWD testing in pavement structure evaluation

	Project	Location	Modulus(25°C) (ksi)	CV(%)	Mid depth temp (°C)	STD
	US190	base2	1637	12	28.6	196
		base3	1501	19	32.6	285
		BC1	1761	16	21.3	282
		BC2	1795	21	35.3	377
	LA964	WC1	1563	18	27.6	281
		WC2	1533	19	29.1	291

